May, 2017

Ask Uncle Colin: Powers and polar form

Dear Uncle Colin, I've been given $u = (2\sqrt{3} - 2\i)^6$ and been told to express it in polar form. I've got as far as $u=54 -2\i^6$, but don't know where to take it from there! - Not A Problem I'm Expecting to Resolve Hello, NAPIER, and thanks for your

Read More

How Would Martin Gardner Prove It?

Someone recently asked me where I get enough ideas for blog posts that I can keep up such a 'prolific' schedule. (Two posts a week? Prolific? If you say so.) The answer is straightforward: Twitter Reddit One reliable source of interesting stuff is @WWMGT - What Would Martin Gardner Tweet?

Read More

Ask Uncle Colin: A Complex Conundrum

Dear Uncle Colin, I'm told that $z=i$ is a solution to the complex quadratic $z^2 + wz + (1+i)=0$, and need to find $w$. I've tried the quadratic formula and completing the square, but neither of those seem to work! How do I solve it? - Don't Even Start Contemplating

Read More

Mr Penberthy’s Problem

It turns out I was wrong: there is something worse than spurious pseudocontext. It's pseudocontext so creepy it made me throw up a little bit: This is from 1779: a time when puzzles were written in poetry, solutions were assumed to be integers and answers could be a bit creepy...

Read More

Ask Uncle Colin: My partial fractions decompose funny

Dear Uncle Colin, I recently had to decompose $\frac{3+4p}{9p^2 - 16}$ into partial fractions, and ended up with $\frac{\frac{25}{8}}{p-\frac{4}{3}} + \frac{\frac{7}{8}}{p-\frac{4}{3}}$. Apparently, that's wrong, but I don't see why! -- Drat! Everything Came Out Messy. Perhaps Other Solution Essential. Hi, there, DECOMPOSE, and thanks for your message - and your

Read More

Wrong, But Useful: Episode 44

In this month's episode of Wrong, But Useful, @reflectivemaths1 and I are joined by consultant and lapsed mathematician @freezingsheep2. We discuss: Mel's career trajectory into 'maths-enabled type things that are not actually maths', although she gets to wave her hands a lot. What you can do with a maths degree,

Read More

Review: The Mathematics Lover’s Companion, by Edward Scheinerman

There is a danger, when your book comes plastered in praise from people like Art Benjamin and Ron Graham, that reviewers will hold it to a higher standard than a book that doesn't. That would be unfair, and I'll try to avoid that. What it does well This is a

Read More

Ask Uncle Colin: an arctangent mystery

Dear Uncle Colin, In an answer sheet, they've made a leap from $\arctan\left(\frac{\cos(x)+\sin(x)}{\cos(x)-\sin(x)}\right)$ to $x + \frac{\pi}{4}$ and I don't understand where it's come from. Can you help? -- Awful Ratio Converted To A Number Hello, ARCTAN, and thank you for your message! There's a principle I want to introduce

Read More

When heuristics go bad

Last week, I wrote about the volume and outer surface area of a spherical cap using different methods, both of which gave the volume as $V = \frac{\pi}{3}R^3 (1-\cos(\alpha))^2(2-\cos(\alpha))$ and the surface area as $A_o = 2\pi R^2 (1-\cos(\alpha))$. All very nice; however, one of my most beloved heuristics fails

Read More

Ask Uncle Colin: A load of parabolics

Dear Uncle Colin, One of my students recently attempted the following question: "At time $t=0$ particle is projected upwards with a speed of 10.5m/s from a point 10m above the ground. It hits the ground with a speed of 17.5m/s at time $T$. Find $T$." They used the equation $s

Read More

Sign up for the Sum Comfort newsletter and get a free e-book of mathematical quotations.

No spam ever, obviously.

Where do you teach?

I teach in my home in Abbotsbury Road, Weymouth.

It's a 15-minute walk from Weymouth station, and it's on bus routes 3, 8 and X53. On-road parking is available nearby.

On twitter