December, 2019

The Mathematical Ninja and the Cube Root of 13

A physicist. A calculator. The Mathematical Ninja’s face - what could be seen of it - was more snarl than feature. It’s quite tricky to hiss something that doesn’t have any sibilant consonants, but they hissed all the same: “The cube root of 13? You don’t need a calculator for

Read More

Ask Uncle Colin: Where Should I Send Charitable Contributions?

Dear Uncle Colin, I know you don't ask for any money for your incessant blogging, and I've already bought Cracking Mathematics and The Maths Behind - how can I possibly repay you for your work? - Charities Helping Resist Inequality, Serving To Massively Ameliorate Society Hi, CHRISTMAS, and thanks for

Read More

The Classwiz and the Normal Distribution

I realised today I’ve been advising my students… not wrong, exactly, but imprecisely. Capriciously. Unmathematically. Even through it was in statistics, where such things are usually tolerated, I felt it was worth putting it right. It was in a scenario such as this: The times an athlete takes to run

Read More

Ask Uncle Colin: Some Messy Powers

Dear Uncle Colin, I’m told that $\frac{16^p \times 8^q}{4^{p+q}}=2^n$, and I need to find $n$ in terms of $p$ and $q$. How would I do that? $q$ Uppishly In $n$ Equation Hi, $q$UI$n$E1, and thanks for your message! There are several ways to approach this, as per always. Let’s start

Read More

Barney’s triangles

A puzzle from @Barney_MT: Find angle BDC This turns out to be a bit more demanding than I expected. There are spoilers below the line, showing a solution that took rather more time and space than the final polished version does. Spoilers below the line! Adding in circles When I’ve

Read More

Ask Uncle Colin: A Trig Inequality

Dear Uncle Colin, I have to find the values of $x$, between 0 and $\pi$ inclusive, where $2\cos(x) > \sec(x)$. My answer was $0 \le x \lt \piby 4$, but the answer also includes $\piby 2 \lt x \lt \frac{3}{4}\pi$. I don’t understand why! Stuck Evaluating Confusing And Nasty Trig

Read More

A Trigonometric Puzzle

A puzzle that came to me via @realityminus3, who credits it to @manuelcj89: $\sin(A) + \sin(B) + \sin(C) = 0$ $\cos(A) + \cos(B) + \cos(C) = 0$ Find $\cos(A-B)$. There’s something pretty about that puzzle. Interestingly, my approach differed substantially from all of my Trusted And Respected Friends’. Spoilers below

Read More

Wrong, But Useful, Episode 74

It’s time for the @BigMathsJam Wrong, But Useful! @stecks (Katie Steckles): Brouwer’s Fixed Point Theorem: “they said it’s a theorem, so I’ve got to believe it.” Mentions @jamesgrime. @christianp (Christian Lawson-Perfect): ordering cards to generate a fractal sequence. @peterrowlett (Peter Rowlett): transforming numbers problems into graphs. Mentions @alexcorner and @wtgowers.

Read More

Ask Uncle Colin: A proof

Dear Uncle Colin, I have to prove that, if $a > b \ge 2$, then $ab > a + b$. I can see it must be true, but I can’t prove it! Any ideas? Questioning Everything Done Hi, QED, and thanks for your message! There are several ways to go

Read More

Dictionary of Mathematical Eponymy: The Lutz-Nagell Theorem

One of the reasons I’m writing the Dictionary of Mathematical Eponymy is to introduce myself to new ideas, and to mathematicians I didn’t know about. To things I wish I knew more about. Elliptic curves are pretty high on that list. What is the Lutz-Nagell theorem? It’s sometimes - reasonably,

Read More

Sign up for the Sum Comfort newsletter and get a free e-book of mathematical quotations.

No spam ever, obviously.

Where do you teach?

I teach in my home in Abbotsbury Road, Weymouth.

It's a 15-minute walk from Weymouth station, and it's on bus routes 3, 8 and X53. On-road parking is available nearby.

On twitter