The Flying Colours Maths Blog: Latest posts

Ask Uncle Colin: fourth roots

Dear Uncle Colin, How would you find $\sqrt[4]{923521}$ without a calculator? -- Some Quite Recherché Technique Hi, SQRT! I have a few possible techniques here. The first is "do some clever stuff with logarithms", the second is "do some clever stuff with known squares" and the last is "do some

Read More

Wrong, But Useful: Episode 45

In this episode of Wrong, But Useful1: We're joined by @ajk_44, who is Alison Kiddle from NRICH in real life. We ask Alison: how long has NRICH been going? How do you tell which problems you've covered before? Colin's number of the podcast is 13,532,396,179 (he mistakenly calls it quadrillions

Read More

Some Thoughts On EdExcel 9-1 GCSE Paper 1

I imagine, if one put one's mind to it, one could acquire copies of this year's paper online - however, many schools plan to use it as a mock for next year's candidates. In view of that, and at the request of my top-secret source, I'm not sharing the actual

Read More

Ask Uncle Colin: about Chebyshev’s Equation

Dear Uncle Colin, I've been asked to solve Chebyshev's equation using a series expansion: $(1-x)\diffn{2}{y}{x} - x\dydx + p^2 y = 0$ assuming $y=C_0 + C_1 x + C_2 x^2 + ...$. I end up with the relation $C_{N+2} = \frac{C_N \left(N^2 -p^2\right)}{(N+2)(N+1)}$, but the given answer has a +

Read More

Sum summary: update

This is a rolling update post for responses to this morning's post. The Admirable Adam Atkinson has emailed to suggest an answer I hadn't considered: 100. "I could imagine many programming languages would say 100. You start with the first term, 100. discover that the "next" number, 101, is outside

Read More

A Summary Of Some Summery Summation

"Counting is hard. This is what I keep saying." - @realityminus3 It all stemmed from an arithmetic series problem with a known sum, but an unknown number of terms. As these things are prone to do, it led to a quadratic equation; as those things are prone to do, that

Read More

Ask Uncle Colin: Powers and polar form

Dear Uncle Colin, I've been given $u = (2\sqrt{3} - 2\i)^6$ and been told to express it in polar form. I've got as far as $u=54 -2\i^6$, but don't know where to take it from there! - Not A Problem I'm Expecting to Resolve Hello, NAPIER, and thanks for your

Read More

How Would Martin Gardner Prove It?

Someone recently asked me where I get enough ideas for blog posts that I can keep up such a 'prolific' schedule. (Two posts a week? Prolific? If you say so.) The answer is straightforward: Twitter Reddit One reliable source of interesting stuff is @WWMGT - What Would Martin Gardner Tweet?

Read More

Ask Uncle Colin: A Complex Conundrum

Dear Uncle Colin, I'm told that $z=i$ is a solution to the complex quadratic $z^2 + wz + (1+i)=0$, and need to find $w$. I've tried the quadratic formula and completing the square, but neither of those seem to work! How do I solve it? - Don't Even Start Contemplating

Read More

Mr Penberthy’s Problem

It turns out I was wrong: there is something worse than spurious pseudocontext. It's pseudocontext so creepy it made me throw up a little bit: This is from 1779: a time when puzzles were written in poetry, solutions were assumed to be integers and answers could be a bit creepy...

Read More

Sign up for the Sum Comfort newsletter and get a free e-book of mathematical quotations.

No spam ever, obviously.

Where do you teach?

I teach in my home in Abbotsbury Road, Weymouth.

It's a 15-minute walk from Weymouth station, and it's on bus routes 3, 8 and X53. On-road parking is available nearby.

On twitter