# The Flying Colours Maths Blog: Latest posts

## Using continued fractions to generate rational approximations

A redditor asks: How would I find a good rational approximation to something like $\log_{10}(7)$? The Mathematical Ninja mutters 0.85 under his breath, as a matter of course, reasoning that $\log_{10}(7) \approx \log_{10}\left(\sqrt{ \frac {10^2 }{2} } \right)$, although my calculator says 0.845098, so he's off by about 0.6%. However,

## Ask Uncle Colin: How do I look at matrices

Ask Uncle Colin is a chance to ask your burning, possibly embarrassing, maths questions -- and to show off your skills at coming up with clever acronyms. Send your questions to colin@flyingcoloursmaths.co.uk and Uncle Colin will do what he can. Dear Uncle Colin How can you look at a matrix

## How the Mathematical Ninja explains the Mathematical Pirate’s circle trick

"Let me see that!" commanded the Mathematical Ninja, looking at one of the Mathematical Pirate's blog posts. "That's... but that's..." "It's not wrong!" said the Mathematical Pirate, smugly. "It just works!" "But you're presenting it as magic, not as maths." The Mathematical Pirate nodded eagerly. "Lovely magic! How does it

## Ask Uncle Colin: why does the Newton-Raphson method work?

Ask Uncle Colin is a chance to ask your burning, possibly embarrassing, maths questions -- and to show off your skills at coming up with clever acronyms. Send your questions to colin@flyingcoloursmaths.co.uk and Uncle Colin will do what he can. Dear Uncle Colin, I know how to use the Newton-Raphson

## How the Mathematical Pirate finds the centre and radius of a circle

"Arr?" said the student, really not sure. "No, no, $r$," said the Mathematical Pirate. "The centre is at C -- or $(a,\, b)$, if you prefer -- and the radius is $r$." "Gotcha. So, if you've got something like $x^2 + y^2 + 8x - 12y + 3=0$, how do