Posted in gcse.

A student asks: When you've got a value to the nearest whole number, why is the upper bound something $.5$ rather than $.4$? Doesn't $.5$ round up? So I don't have to keep writing something$.5$, let's pick a number, and say we've got 12 to the nearest whole number. $12.5$

Read More →There's a legend, so well-known that it's almost a cliche, about the wise man who invented chess. When asked by the great king what reward he wanted, he replied that he'd be satisfied by a chessboard full of rice: one grain on the first square, two on the second, four

Read More →A student asks: How could I simplify a sum like $(\sqrt 3+\sqrt 2)(\sqrt 3-\sqrt 2)$? Great question! The trick is to treat it like it's an algebraic bracket, like this: $(x + y)(x - y) = x^2 + yx - xy - y^2$ But then you've got $+yx -xy$ in

Read More →A student asks: Hi, I am struggling with trying to revise for my GCSE maths calculator mock… I was wondering if you could give a few tips on how to revise for this exam in particular. There's a commonly-held belief that the calculator paper is easier than the non-calc one,

Read More →There's nearly always a question on the non-calculator GCSE paper about Nasty Powers. I'm not talking about the Evil Empire or anything, I just mean powers that aren't nice - we can all deal with positive integer powers, it's the zeros, the negatives and the fractions that get us down.

Read More →$y$ is directly proportional to $x^3$, you say? And when $x = 4$, $y = 72$? Well, then. The traditional method is to say: $y = kx^3$ and substitute in what you know. $72 = 64k$ $k = \frac{72}{64} = \frac{9}{8}$ That gives $y = \frac98 x^3$. Easy enough. But

Read More →
Posted in gcse, triangles, trigonometry.

There's a natural question, when you learn about the sine and cosine rules: "Is there a tan rule?" The answer to that is yes - yes, there is a tan rule. The natural follow-up is "Why don't we learn it?" Let me explain why not! Here's the tangent rule in

Read More →
Posted in gcse, triangles, trigonometry.

There's a natural question, when you learn about the sine and cosine rules: "Is there a tan rule?" The answer to that is yes - yes, there is a tan rule. The natural follow-up is "Why don't we learn it?" Let me explain why not! Here's the tangent rule in

Read More →
Posted in gcse, triangles, trigonometry.

There's a natural question, when you learn about the sine and cosine rules: "Is there a tan rule?" The answer to that is yes - yes, there is a tan rule. The natural follow-up is "Why don't we learn it?" Let me explain why not! Here's the tangent rule in

Read More →Since the dawn of time, two mysteries have plagued mathematicians: a) How do you find a centre of a 90º rotation? and b) What's the 45º set square for? Imagine my surprise when I discovered that each is the answer to the other! Some facts about the centre of rotation

Read More →