Powers

“Here’s a quick one,” suggested a fellow tutor. “Prove that $2^{50} < 3^{33}$.”

Easy, I thought: but I knew better than to say it aloud.

First approach

“I know that $9 > 8$,” I said, checking on my fingers. “So if $2^3 < 3^2$, then $2^{150} < 3^{100}$ and $2^{50} < 3^{\frac{100}{3}}$.”

I was mid-boom when I realised I hadn’t proved it at all! The left-hand side could still be between $3^{33}$ and $3^{\frac{100}{3}}$. I was going to need to tighten things up!

Logs! They’re all made out of logs!

Comparing $2^{50}$ with $3^{33}$ is the same as comparing $50\ln(2)$ with $33\ln(3)$ - or comparing $\frac{50}{33}\ln(2)$ with $\ln(3)$.

Now, $\ln(2) < 0.69315$, so $\frac{\ln(2)}{3} < 0.23105$ and $\frac{\ln(2)}{33} < 0.0211$.

Multiplying that by 50 gives 1.05, which is smaller than $\ln(3)$. But that feels a bit unsatisfactory.

Let’s bring out the binomial

I don’t just know that $\frac{9}{8} > 1$, I know that $\frac{9}{8} = 1 + \frac{1}{8}$. I also know that $\br{ 1 + x}^8 > 1 + 8x$ if $x>0$, so $\br {\frac{9}{8} }^8 > 2$.

I can rewrite that as $\frac{3^{16}}{2^{24}} > 2$, so $3^{16} > 2^{25}$, which implies that $3^{32} > 2^{50}$ (and hence that $3^{33} > 2^{50}$.

I might have known you'd have something to say, sensei

$\ln\br{\frac{9}{8}} \gt \frac{2}{17}$.

So $34 \ln(3) - 51\ln(2) \gt 2 \gt \ln(2)+\ln(3)$.

So $33\ln(3) \gt 52 \ln(2)$, and $2^{52} \lt 3^{33}$."

Another route

Amelia points out that $3^{7} > 2^{11}$, so $3^{28} > 2^{44}$. Further, $3^{4} > 2^{6}$, so we can say $3^{32} > 2^{50}$ as before.

Have you got a better way?

Colin

Colin is a Weymouth maths tutor, author of several Maths For Dummies books and A-level maths guides. He started Flying Colours Maths in 2008. He lives with an espresso pot and nothing to prove.

Share

This site uses Akismet to reduce spam. Learn how your comment data is processed.