Dear Uncle Colin,

I'm pretty good with quadratic inequalities and pretty good with absolute values, but when I get the two together, I get confused. For example, I struggled with the set of values satisfying $x^2 -\left| 5x-3\right| < 2 + x$. Can you help?

- Nasty Absolute Value Inequalities Ending Rongly

Hi, NAVIER, and thanks for your message!

These are nasty, but can be made simpler by rearranging and sketching.

I would begin by getting the absolute value on one side and everything else on the other: $x^2 - x - 2 < \left| 5x-3\right|$.

The left-hand side is a quadratic that cuts the $x$-axis at $(-1,0)$ and $(2,0)$; the right-hand side is a steep V-shape that bounces off of the $x$-axis at $x= \frac{3}{5}$. The quadratic curve is below the V between the two points where they cross.

I would now treat this as two inequalities. When $x < \frac{3}{5}$, the absolute value part is $3-5x$, and the two cross when $x^2 - x - 2 = 3 - 5x$. Rearranging, this gives $x^2 + 4x - 5=0$, which has solutions at $x=-5$ and $x=1$. Only the first of those is in the domain we're looking at, so one of the crossing points is where $x=-5$.

The other comes from solving $x^2 - x - 2 = 5x - 3$ for $x > \frac{3}{5}$, which simplifies to $x^2 - 6x + 1$. This has solutions at $x = 3 \pm 2\sqrt{2}$, and only the larger of those is in the domain (since $3 - 2\sqrt{2} \approx 0.2 < \frac{3}{5}$).

As we know the set of values that works is all of the $x$s between the crossing points, our final answer is $-5 \lt x \lt 3 + 2\sqrt{2}$.

Hope that helps!

- Uncle Colin

Colin

Colin is a Weymouth maths tutor, author of several Maths For Dummies books and A-level maths guides. He started Flying Colours Maths in 2008. He lives with an espresso pot and nothing to prove.

Share

This site uses Akismet to reduce spam. Learn how your comment data is processed.