Ask Uncle Colin: Why is it not 4?

Ask Uncle Colin is a chance to ask your burning, possibly embarrassing, maths questions -- and to show off your skills at coming up with clever acronyms. Send your questions to and Uncle Colin will do what he can.

Dear Uncle Colin,

I have a binomial expansion of $(1+x)^\frac{1}{2}$ and need to approximate $\sqrt{5}$. Apparently you need to substitute in $x=\frac{1}{4}$, but I'd have thought $x=4$ was a more obvious choice. What gives?

-- Roots Are Dangerous If Understood Sloppily

Hi RADIUS, and thanks for your message!

That does seem to be the obvious substitution, but for one small difficulty that you'll discover if you try it: it doesn't work. $(1+x)^\frac{1}{2} \approx 1 + \frac 12 x - \frac 18 x^2 + \frac{1}{16}x^3 + ...$, and if you put $x=4$ into that you get $1 + 2 - 2 + 4 ... $. The terms continue to get bigger in magnitude and oscillate between positive and negative - and they never converge to a single value.

This is because of something called the radius of convergence1 - if the exponent $n$ of a binomial expansion $(a+bx)^n$ is anything except a positive integer, the expansion is only defined for $|x| < \frac{a}{b}$. For this example, $a=b=1$, and when $x=4$, it's certainly not within the radius! Instead, we need to find a value of $x$ that makes the bracket a simple square multiple of 5 - and picking $x=\frac14$ makes the bracket $\frac{5}{4}$, the square root of which is $\frac12\sqrt{5}$. Putting this into the expansion gives $\frac12\sqrt{5} \approx 1 + \frac{1}{8}-\frac{1}{128}+\frac{1}{1024}$, or 1.11816 or so. Doubling that gives 2.23633, compared to a true value of 2.23607. Even after four terms, it's pretty good! It's possible to get a closer answer by picking an even cleverer value of $x$ - for example, $x = -\frac{1}{81}$ would make the bracket $\frac{80}{81}$, the square root of which is $\frac{4}{9}\sqrt{5}$. (The closer the value of $x$ is to 0, the quicker the convergence.)

I hope that helps!

-- Uncle Colin

* Edited 2016-12-21 to fix LaTex, formatting and categories.


Colin is a Weymouth maths tutor, author of several Maths For Dummies books and A-level maths guides. He started Flying Colours Maths in 2008. He lives with an espresso pot and nothing to prove.

  1. The reasons behind this are, quite literally, complex []


Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up for the Sum Comfort newsletter and get a free e-book of mathematical quotations.

No spam ever, obviously.

Where do you teach?

I teach in my home in Abbotsbury Road, Weymouth.

It's a 15-minute walk from Weymouth station, and it's on bus routes 3, 8 and X53. On-road parking is available nearby.

On twitter